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SPECIAL FEATURES OF THE SHOCK-WAVE STRUCTURE IN MIXTURES OF GASES

WITH DISPARATE MOLECULAR MASSES

UDC 533.6.011.8G. A. Ruyev,1 A. V. Fedorov,1 and V. M. Fomin2

Asymptotic solutions are constructed for the problem of the shock-wave structure in mixtures of gases
with disparate molecular masses. The effect of emergence of a plateau on the density profile of the
light component and nonmonotonicity of the temperature profile of the heavy component is described.
Based on a comparison with calculations of the full model, the range of applicability of asymptotic
solutions is determined.

Mixtures of gases with disparate molecular masses posseses substantial velocity and temperature nonequi-
librium because of the large inertia of heavy molecules. This is most clearly manifested in a shock wave, where the
difference in velocities and temperatures of the components is of the order of their magnitudes. In this case, the
flow should be described by equations of multivelocity, multitemperature gas dynamics, where each component has
its own velocity and temperature.

The problem of the shock-wave structure in binary and ternary mixtures of gases was solved numerically on
the basis of equations of multivelocity, multitemperature gas dynamics [1, 2]. A comparison with experimental data
and calculations by kinetic equations shows that the equations considered yield a satisfactory description of the
shock-wave structure in a wide range of molar concentrations of the heavy component for Mach numbers M = 1–4.
Some features of the shock-wave structure considered in [1, 2] have not been adequately explained.

The objective of the present work is to obtain asymptotic solutions of the problem of the shock-wave structure
in gas mixtures with low concentrations of heavy components and to explain effects observed in the shock wave on
the basis of these solutions.

1. Physicomathematical Formulation of the Problem of the Shock-Wave Structure. The system
of equations that describes a one-dimensional flow of a gas mixture has the form [1]
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pi = RiρiTi, ei = civTi,

where ρi, ui, and Ti are the mass density, velocity, and temperature of the ith component, Ri = k/mi (k is the
Boltzmann constant and mi is the molecular mass of the ith component), and ni = ρi/mi is the numerical density
of the ith component. The coefficients Kij and qij , which characterize the momentum and energy exchange between
the components of the mixture, and the partial coefficients of viscosity µi and thermal conductivity λi for a binary
mixture, have the following form [1]:
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Fig. 1
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The subscripts 1 and 2 refer to the light and heavy components, respectively; Ω(k,l)
ij are the collision integrals.

We have to find a steady-state solution of system (1.1) that satisfies the boundary conditions

(ρi, ui, Ti)→ (ρ0
i , u

0, T 0) as x→ −∞, (ρi, ui, Ti)→ (ρ1
i , u

1, T 1) as x→ +∞. (1.3)

The superscript 0 corresponds to the free-stream parameters, and the quantities marked by the superscript 1 are
related to the free-stream parameters by the Hugoniot relations for an equilibrium mixture.

Problem (1.1), (1.3) was solved numerically by the pseudotransient method with the use of an implicit
scheme of splitting in accordance with physical processes for a binary mixture of gases in [1] and, for a ternary
mixture of gases, in [2]. Satisfactory agreement was reached with experimental data and calculations by kinetic
equations and the Direct Simulation Monte Carlo (DSMC) method for Mach numbers M = 1–4 and wide ranges of
molar concentrations of the components and ratios of molecular masses.

Some features of the shock-wave structure were noted in [1, 2]. In particular, for a low concentration of the
heavy gas in the binary mixture, a plateau can appear on the density profile of the light component. This effect was
also observed in experiments [3] and kinetic calculations [4]. Figure 1 shows an example of such a calculation with
the use of system (1.1) in a 99% He + 1% Xe mixture for a Mach number ahead of the shock wave M 0 = 3. The
dimensionless densities and temperatures of the components are calculated by the formulas ρ̂i = (ρi− ρ0

i )/(ρ
1
i − ρ0

i )
and T̂i = (Ti−T 0)/(T 1−T 0). Figure 1 shows the density profiles ρ̂i (curves 1) and temperature profiles T̂i (curves 2)
of the components; the solid and dashed curves refer to the light and heavy components, respectively (l is the mean
free path of a molecule determined in [5]). First, the density of the light gas increases, then there is a section of
an almost constant density, and after that a more dramatic increase in density is observed. The calculations were
performed using the model of hard spheres. As is shown in [1], similar results were obtained for different power
potentials of intermolecular interaction, where the power exponents were chosen on the basis of experimental data.

Another special feature of the shock-wave structure in a binary mixture is the nonmonotonic behavior of
temperature of the heavy gas in the case of a low molar concentration of the latter. The temperature of the heavy
component increases to a certain value higher than the equilibrium temperature behind the shock wave and then
decreases back, tending to the equilibrium temperature.

We consider a binary mixture. We assume that K = K12, βi = βij (j 6= i), q = qij , and µi, λi are positive
constants. For a mixture of monatomic gases, we have γ1 = γ2 = γ = Ri/civ. We assume that all the sought
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functions of system (1.1) depend on the coordinate ξ = x − Dt (D is the shock-wave velocity). We introduce
dimensionless variables by the formulas

V̄i = (c1 + c2)Vi/c3, T̄i = (R1c1 +R2c2)(c1 + c2)Ti/c23, ρ̄i = c3ρi/(c1 + c2)2,

µ̄i = µi/µ∗, λ̄1 = λ1/λ∗, ξ̄ = ξ(c1 + c2)/µ∗, µ∗ = (c1 + c2)2/K,

λ∗ = (R1c1 +R2c2)µ∗/(c1 + c2), q̄ = µ∗q/((c1 + c2)(R1c1 +R2c2)),

where ci are constants of integration and Vi = ui −D.
Using the dimensionless variables (in what follows, the bar is omitted), system (1.1) is transformed to
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Here A = (γ + 1)V 0V 1/(2(γ − 1)), V 0 = γM 2
0/(γM 2

0 + 1), V 1 = 2γ/(γ + 1)− V 0, and α0
i is the mass concentration

of the ith component of the mixture ahead of the shock wave.
We have to find a solution of system (1.4) that satisfies the boundary conditions

Vi → V 0, Ti → T 0 as ξ → −∞, Vi → V 1, Ti → T 1 as ξ → +∞, (1.5)

where T i = V i(1− V i).
2. Asymptotic Study in the Presence of a Plateau. We consider the case of a low molar concentration

of the heavy gas and a finite mass concentration (x0
2 � 1). In this approximation, the mass of heavy gas molecules

is much greater than the mass of light gas molecules. In the Euler approximation (µi = λi = 0), from (1.4), we
obtain the following system of equations:
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In deriving system (2.1), we retain quantities of the order of x0

2 df/dξ; in this case, we have α0
2 dV2/dξ
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The results of an analysis of the first equation in (2.1) in the plane (V̂1, V̂2) [V̂i = (Vi − V 1)/(V 0 − V 1)]
are plotted in Fig. 2. The data are obtained for the conditions M 2

0 < 1/α0
1 (curve 1; the shock-wave velocity is

smaller than the velocity of sound in the light gas), M 2
∗ = 2γ/((γ − 1)α0

1) > M 2
0 > 1/α0

1 (curve 2), and M 0 > M ∗
(curve 3). Thus, if the shock-wave velocity does not exceed the velocity of sound in the light gas, a continuous
solution is obtained; otherwise, the solution has a discontinuity at which the heavy gas velocity is continuous. If
the shock-wave velocity is smaller than a certain value, both velocities decrease monotonically. If the shock-wave
velocity is higher than this value, however, the velocity of the light component increases immediately behind the
discontinuity, reaches a maximum, and then decreases, tending to the equilibrium velocity behind the shock wave.

Similar results were obtained in [6], where relaxation-type equations for a binary mixture in the one-
temperature approximation were considered. In this case, the pressure of the mixture is a rigorously increasing
function

dP
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Fig. 2

since V2 < 1 and V2 > V1, and the derivative is ∂L/∂V1 < 0 on the curve L(V1, V2) = 0 in the domain considered
(Fig. 2).

Thus, the light gas is accelerated in the region with an elevated pressure. Equation (2.1) yields

α0
1

dV1

dξ
= −dP

dξ
+ α0

2(V2 − V1),

i.e., the force of intercomponent exchange immediately behind the discontinuity is greater than the pressure gradient,
which is the reason for the light gas acceleration.

The anomalous behavior of the light component velocity may be caused by the neglect of viscosity. Let
µ1 6= 0, then, the problem of velocity determination reduces to a system of two ordinary differential equations
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where F1 = (4/3)(µ1K/α
0
2).

We have to find a solution connecting the equilibrium positions (V 0, V 0) and (V 1, V 1). We determine the
type of these singularities. Linearization in the vicinity of (V 0, V 0) yields the characteristic equation
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In the shock wave, M 0 > 1 and, hence, V 0 > γ/(γ + 1). Therefore, the point (V 0, V 0) is a saddle. The output
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Taking into account that V 1 < γ/(γ + 1) and α0
1 < 1, we can easily show that λ1 < 0 and λ2 < 0, i.e., this

singular point (V 1, V 1) is a node. The input direction of integral curves corresponding to the minimum eigenvalue
is determined by the relation k(1) = (C +
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We consider three cases depending on the behavior of the isocline L(V1, V2) = 0.
Case 1: M 2

0 < 1/α0
1. In this case, the integral curve emanating from the point (V 0, V 0) enters the region

bounded by isoclines of vertical and horizontal inclinations V1−V2 = 0 and L(V1, V2) = 0, respectively, and acquires
an equilibrium state (V 1, V 1). This behavior of integral curves follows from the inequalities
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dV2
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< 0.

Here k(i)
L = −(∂L/∂V2)/(∂L/∂V1) for V1 = V2 = V i.
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Fig. 3

Case 2: M 2
0 > 1/α0

1. The integral curve is located in the domain bounded by the curves V1 − V2 = 0,
L(V1, V2) = 0, and V2 = V 0 for M 0 < M ∗ and by the curves V1 − V2 = 0, V1 = V 1, and V2 = V 0 for M 0 > M ∗,
which follows from the inequalities and relations
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L ,

dV2
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Here V + = V 0 +2(γ−(γ+α0
1)V 0)/((γ+1)α0

1) is the light gas velocity behind the shock in the Euler approximation.
Thus, for all F1, the only integral curve emanating from the point (V 0, V 0) cannot leave the corresponding

domains and inevitably acquires the steady state (V 1, V 1), i.e., there exists a solution of the initial problem, and
this solution is unique.

In the first two cases, the velocities of both components decrease monotonically.
Case 3: M 0 > M ∗. In this case, the behavior of the light gas velocity depends on F1. If F1 > 1, the velocities

are monotonic, i.e., allowance for viscosity may eliminate the nonmonotonic character of the light gas velocity. If
F1 � 1, the integral curve emanating from the point (V 0, V 0) is first located in a narrow band [V 0

2 −ε, V 0
2 ] and then

reaches the isocline of zero inclinations L(V1, V2) = 0. As a result, the derivative of velocity of the light component
vanishes. Then, the light gas velocity increases until the integral curve intersects the isocline again; after that, the
velocity decreases, tending to the equilibrium velocity behind the shock wave (curve 1 in Fig. 3).

For the model of elastic hard spheres for x2 � 1 and m1/m2 � 1, Eq. (1.2) yields F1 ≈ m1/(m2M 2
0),

i.e., F � 1. For example, for a He–Xe mixture, we have F1 ≈ 0.004 for M 0 = 3. Hence, under real conditions,
the light gas velocity in the shock wave has two extreme points for M 0 > M ∗. In calculations of the shock-
wave structure, this behavior corresponds to the emergence of a plateau. The reason is the small difference in
velocities at extreme points. The greatest difference is reached in the Euler approximation. The estimates show
that (V∗ − V +

1 )/(V 0 − V 1) ≈ 0.015 (V∗ is the light gas velocity at the point of a local maximum) with increasing
Mach number up to 6 and ratio of molecular masses up to 100. Curve 1 in Fig. 3 shows the dependence V̂1(V̂2)
in the plateau region, which was calculated using the full model with parameters corresponding to Fig. 1; in this
case, M 0 > M ∗. In calculations by the full model, the velocity profile has also two extreme points. Curve 2 in
Fig. 3 shows the calculation results obtained by formulas (2.1). In the relaxation region, Eqs. (2.1) give an adequate
description of the nonmonotonic profile of the light gas velocity.

3. Nonmonotonicity of the Temperature Profile of the Heavy Component. The nonmonotonicity
of the temperature profile of the heavy gas was previously obtained in [1, 7]. Bird [7] gives the DSMC results for
the dependence of the temperature peak of the heavy component on the molar concentration, ratio of molecular
masses, and Mach number.

The effect of nonmonotonicity can be explained using Eqs. (2.1). Figure 4 shows a comparison of the
temperature distributions T̂1(V̂2) (solid curves) and T̂2(V̂2) (dashed curves) for M 0 = 3 and x0

2 = 0.01 in the He–Xe
mixture [curves 1 and 2 show the calculations by the full model and Eqs. (2.1), respectively]. In the relaxation
region, these dependences are in good agreement. It follows from the last equation in (2.1) that the temperature
of the heavy gas changes as a result of deceleration processes in the shock wave, energy dissipation (work of the
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Fig. 4

force of intercomponent interaction), and energy exchange between the components because of the temperature
difference. The influence of the first two factors leads to an increase in temperature of the heavy gas in the shock
wave; in addition, T1 > T2 at the initial section. As a result, the temperature of the heavy gas becomes higher than
the temperature of the light gas and may exceed the equilibrium temperature behind the shock wave; after that, it
tends to the equilibrium temperature behind the shock wave due to heat exchange with the light gas.

Formulas (2.1) can be simplified in the case of low molar and mass concentrations of the heavy gas.
Let x0

2 � α0
2 � 1. Assuming that λi = µ2 = 0, we obtain from (1.4)
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We have to find a solution of (3.1) satisfying the boundary conditions (1.5). In the general case, the solution
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.

Since the temperature peak is in the relaxation region, we can pass to the limit at F1 → 0 in (3.2). As a
result, we obtain

Vi = V 0, Ti = T 0 for τ < 0,

V1 = V 1, T1 = T 1, V2 = ϕ(τ), T2 = φ(τ) for τ > 0,

ϕ(τ) = V 1 + (V 0 − V 1) exp (−τ),
(3.3)
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(
(V 0)γ−1T 0 + F3

τ∫
0

ϕγ−1T 1 exp (F3y) dy + F2

τ∫
0

(V 1 − ϕ)2ϕγ−1 exp (F3y) dy

)
.
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TABLE 1

M 0 m2/m1 α0
2

(T ∗ − T 1)/(T 1 − T 0), %

Full
model

(2.1) (3.3)

10 0.0917 29 24 26
4 50 0.3356 15 10 21

100 0.5025 8 6 18

10 0.0917 27 23 26
3 50 0.3356 13 10 23

100 0.5025 6 4 20

10 0.0917 20 20 25
2 50 0.3356 8 6 21

100 0.5025 3 2 19

The calculation results for the temperature peak T ∗ of the heavy gas for x0
2 = 0.01 are listed in Table 1.

One can see that Eqs. (3.3) yield rather exact values of the temperature peak only for a low mass concentration of
the heavy gas.

Relations (3.3) become much simpler if V 0−V 1 = ε� 1 (weak shock waves). Obviously, in the approxima-
tion considered, we have F1 � ε. We introduce new dimensionless velocities vi and temperatures ti:

Vi = γ/(γ + 1) + (ε/2)vi, Ti = γ/(γ + 1)2 + (γ − 1)/(2(γ + 1))εti − ε2/4. (3.4)

From (3.3), in the zeroth approximation in terms of ε, we obtain

vi = 1, ti = −1 for τ < 0,

v1 = −1, t1 = 1, v2 = −1 + 2 exp (−τ), t2 = 1 + 2/(F3 − 1)w(1− F3w
F3−1) for τ > 0,

w = (1 + v2)/2.

If the ratio of molecular masses tends to zero and γ = 5/3, then from (2.1), we obtain F3 ≈ 2, i.e., the
dependence of the temperature of the heavy gas on its velocity is quadratic. The temperature peak is 12.5% of the
overall pressure difference in the shock wave.

4. Shock-Wave Structure in a Ternary Mixture of Gases. We consider a flow of a ternary mixture
of gases, consisting of a light gas and two heavy gases. The subscripts 1, 2, and 3 refer to the light, less heavy, and
heavy gases, respectively. The system of equations of three-velocity, three-temperature gas dynamics in the one
dimensional case has the form (1.1), where the coefficients Kij and qij characterizing the momentum and energy
exchange between the components of the mixture and the partial coefficients of viscosity and thermal conductivity
are set by expressions given in [1]. Since these expressions are rather cumbersome, we confine ourselves to the case
of low concentrations of the heavy gases n2 ≈ n3 � n1 and m1/mi � 1 (i = 2, 3), i.e., ρ1 ≈ ρ2 ≈ ρ3. Then, the
expressions for the kinetic coefficients take the form

K1i =
16
3
ρ1niΩ

(1,1)
1i , q1i =

3k
mi

K1i (i = 2, 3), K23 =
16ρ2ρ3

3(m2 +m3)
Ω(1,1)

23 ,

µ1 =
5kT1

8Ω(2,2)
1

, µi =
3kρiTi

32ρ1Ω(1,1)
1i

, λ1 =
15k
4m1

µ1, λi =
5k

3mi
µi.

(4.1)

Calculations of the shock-wave structure in the ternary mixture of gases [2] show that the velocities and
temperatures of the components of the mixture in the shock wave are significantly different. As in the binary
mixture, the temperature profiles of the heavy components are nonmonotonic (there may be temperature peaks in
both heavy gases or only in one of them). Mixtures with the ratio of molecular masses of the heavy components of
the order of unity were considered.

In the present work, we calculated the shock-wave structure in a ternary mixture of gases with m3/m2 � 1.
The calculation results for M 0 = 3, x0

2 = 0.01, x0
3 = 0.0025, m2/m1 = 10, and m3/m2 = 10 are plotted in

Fig. 5 (curves 1, 2, and 3 refer to the light, less heavy, and heavy gases, respectively). In addition to the above-
described effects, some new effects were observed is such mixtures. First, the plateau may be in the light gas only

535



Fig. 5

or simultaneously in the light and less heavy gases (Fig. 5a). This occurs if there are two clearly expressed zones
in the relaxation region: the zone of equalization of velocities and temperatures of the light and less heavy gases
and a more extended zone where the mixture acquires the equilibrium state. Second, the temperature profile of the
second component (less heavy gas) may have two local extreme points. The temperature of the second component
first increases and becomes greater than the temperature of the light gas, then it decreases to a certain value and
increases again, tending to the equilibrium temperature behind the shock wave but remaining higher than the
temperature of the light gas (Fig. 5b). The temperature of the second component at the point of a local maximum
may be either higher or lower than the equilibrium temperature behind the shock wave. This effect is caused by
the presence of the third component. The temperature of the second component decreases because of the intense
heat exchange with the heavy gas whose temperature is significantly lower.

To construct asymptotic solutions, we pass to dimensionless velocities and temperatures, using formulas
similar to those in Sec. 1, where K = K13. We obtain

ρiVi = α0
i ,
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2
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= K1i(V1 − Vi) +Kij(Vj − Vi) + µi
d2Vi
dξ2

, (4.2)

x0
i

γ − 1
dTi
dξ

+ x0
i

Ti
Vi

dVi
dξ

= K1iβi1(V1 − Vi)2 +Kijβij(Vj − Vi)2

+ q1i(T1 − Ti) + qij(Tj − Ti) +
4
3
µi

(dVi
dξ

)2

+ λi
d2Ti
dξ2

(i, j = 2, 3, i 6= j),

where Ã = c5(c1 + c2 + c3)/c24 (ci are constants of integration).
We have to find a solution of system (4.2) satisfying conditions (1.5).
We consider the approximation x0

i � α0
i � 1 (i = 2, 3), µ2 = µ3 = λi = 0. From (4.1), there follows

K23/K12 ≈ x0
3

√
m2/m1 � 1, K23/K13 ≈ x0

2

√
m2/m1 � 1, q23/q12 � 1, q23/q13 � 1.
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From (4.2), in the zeroth approximation, we obtain

V1 +
T1

V1
= 1 + µ1

dV1

dξ
, T1 = (γ − 1)

(V 2
1

2
− V1 + Ã

)
, α0

i

dVi
dξ

= K1i(V1 − Vi),

x0
i

dTi
dξ

= −Ti
Vi

dVi
dξ

+K1iβ1i(V1 − Vi)2 + q1i(T1 − Ti), i, j = 2, 3, i 6= j.
(4.3)

Thus, for determining the parameters of the light gas, we have equations similar to those for the one-
component gas. To find the parameters of the heavy gases, we obtain relaxation-type equations. By integrating
system (4.3) in an explicit form, we obtain formulas similar to (3.2). Passing to the limit as µ1 → 0 and confining
ourselves to the case of weak shock waves, we introduce new dimensionless velocities and temperatures, using
Eqs. (3.4). In the zeroth approximation, we obtain

vi = 1, ti = −1 for τ < 0,

v1 = −1, t1 = 1, v2 = −1 + 2 exp (−Fτ), v3 = −1 + 2 exp (−τ),

t2 = 1− 2w3(γ−1)F + 2(wF − w3(γ−1)F )/(3γ − 4), t3 = 1− 2w3(γ−1) + 2(w − w3(γ−1))/(3γ − 4),

F = (m3/m2)(σ12/σ13)2, w = (1 + v3)/2, σ1i = (σ1 + σi)/2 for τ > 0,

where σi is the diameter of a molecule of the ith gas.
The behavior of velocities and temperatures of the heavy gases in the approximation considered depends on

the ratio of masses and diameters of their molecules. For F < 1, the temperature peak of the less heavy gas is
located on the right of the temperature peak of the heavy gas. With increasing F , the temperature peak of the less
heavy gas is shifted; for F � 1, it is located in the beginning of the relaxation region, and the temperature peak of
the heavy gas is located at the end of the relaxation region, which is in qualitative agreement with the calculation
results by the full model.

Thus, asymptotic solutions of the problem of the shock-wave structure have been obtained for the model of
multivelocity, multitemperature gas dynamics of gas mixtures. The emergence of a plateau on the density profile
of the light component and nonmonotonicity of temperature profiles of the heavy gases have been explained on the
basis of these solutions.

This work was partly supported by the Ministry of Education of the Russian Federation (Grant No. E00-
4.0-9.0; project No. 1.01.02 of the Subject Plan of the Novosibirsk State University of Architecture and Civil
Engineering).
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